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Microwave Imaging of Multiple Conducting

Cylinders Using Local Shape Functions
Weng Cho Chew, Senior Member, IEEE, and Gregory P. Otto, Student Merrlbe~, IEEE

Abstract—A novel technique is presented for microwave imag-

ing of multiple conducting cylinders using local shape functions.
In this method, a scattering volume is divided into small sub-

scattering regions and assigned a local shape function amplitude.

The reconstructed image is represented by the set of local shape

functions that satisfy multiple scattering boundary conditions.
Monochromatic image reconstructions have a resolution scale of

0.1 A for single scatterers; multiple scatterers can be resolved at

a separation of 0.42 A.

I. INTRODUCTION

M UCH work has been done recently on the microwave

imaging of conducting cylinders in the resonance re-

gion. A previous algorithm for microwave imaging of con-

ducting objects in the resonance region parameterizes the

conducting cylinder shape as a function of polar angle [1].

This is done in order to obtain a single-valued function that

is eventually optimized as a function of 0. Unfortunately, this

method requires each metallic scatterer’s approximate center

to be known. Hence, this method is not as versatile as say the

Born iterative methods [2] for dielectric scatterers. However,

the Born iterative methods are not convergent for conducting

scatterers.

This letter presents a novel and versatile technique for

microwave imaging of multiple metallic cylinders with E,

incident fields. The novelty stems from the definition of local

shape functions assigned to discrete subscatterers and satisfy-

ing multiple scattering boundary conditions. This method is

more versatile for general multiple metallic inverse scattering

problems. An optimization is performed on the measured

far-fields to iteratively reconstruct the analog local shape

functions.

11, FORWARD MODEL

A fixed scattering volume V’ containing all possible scat-

terers can be discretized on a regular grid with grid locations
7_ifort=l,2, . . ., N. Then, for J!3z incident wava, cylin-

drical conducting scatterers in a volume V c V’ can be

approximately decomposed into smaller conducting cylinders
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Fig. 1. Data acquisition geometry for microwave imaging measurements.

“R’ and “T” denote receivers and transmitters, respectively.

(or subscatterers) on this grid, as shown in Fig. 1. Intuitively,

this is equivalent to replacing a metallic scatterer with a group

of thin wires. In order to represent the discretized scatterers,

we assign a binary local shape function to each grid location

such that

{

1, ?-t E v,
7’= o, ?-Z$zv.

(1)

Note that this formulation parameterizes the metallic cylinder’s

shape in terms of a set of binary local shape functions {y, }

with one index i representing grid location.

It is well known that the field from small subscatterers can

be expanded in cylindrical harmonics [2]–[4], so that the total

field is

N

E.(r) = Rg #’(ko, T) e. +~@(ko, ri) ~ a,. (~)

‘i=l

where the first term is a multipole expansion in cylindrical

harmonics for the incident field in free-space and the second

term is a multipole expansion for the scattered field from each

sub scatterer i.

Finally, the unknown scattering amplitudes Ui can be found

by enforcing the boundary conditions on the subscatterers

whereby multiple scattering effects are modeled [4]. Notice

that the boundary conditions for metallic cylinders are en-

forced only on subscatterers in scattering volume V, so the

T-matrix [2] must be weighted by the local shape function
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(a)

Fig. 2. (a) True Image of 2 metal cylinders having diameter 0,05 A and

separated by 0.42 A. Peak value is of 1.0.

amplitude at each subscatterer. This procedure results in a set

of linear equations with a solution given by

a=~(-y).2+7’l -l. D(+. b. (3)

Here, the known matrix ~ contains the T-matrices and the

translation matrices from other subscatterers to account for

multiple scattering interaction. The vector b contains the inci-

dent field amplitudes multiplied by the T-matrices. Moreover,

the operator V (~) converts the vector ~ with elements -y; to a

diagonal matrix. In summary, the forward problem reduces to

solving (3) for the harmonic amplitudes of each subscatterer

represented by vector a, given the local shape functions for

each subscatterer in the vector ~. Then, the field is given by

(2).

III. INVERSE MODEL

Basically, the inverse problem is defined as searching

through all possible 7 and choosing the one that minimizes

the difference between the measured and computed scattered

field. For a set of N binary local shape functions, the number

of search directions is 2N. This is impractical and nonunique

since 1) the evanescent fields are not measured and 2) noise

is present. Instead, we relax our definition of the local shape

functions from binary numbers to complex numbers and we

reconstruct the image by minimizing the following linearized

cost function at each iteration [.5], [6]

where E~t is the measured scattered field and Gk is the

linearized gradient matrix with respect to ~ for the forward

(b)

Fig. 2. (b) Image of 2 metal cylinders having diameter 0.05 A and sepmated
by 0.42 A. Reconstruction after 22 iterations with no noise. Peak value is

0<226.

(c)

Fig. 2. (c) Image of 2 metal cylinders having diameter 0.05 A and separated

by 0.42 A. Reconstruction after 7 iterations with S/N=20 dB. Peak value is

0.094.

problem at iteration ~k. The variational solution of the previ-

ous minimization problem can be written

[

Vk+, = Vk+ ~j .~k + ~~ ‘-1 –t
](

Gk. E~t_@?ah
)

(5)

This defines our iterative reconstruction where 6 is a small

regularization parameter. In this inverse problem, we have

allowed the set of local shape functions be a subset of the
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complex numbers because of the complex iterative algorithm

described by (5). More specifically, the application of the real

operator to a set of complex measured fields is not an analytic

function and would thereby hinder the convergence of the

algorithm.

IV. RESULTS

The gray level plots represent the magnitude of the local

shape functions on a 0.05-A grid with a three point linear in-

terpolation scheme for post-processing. All calculations had a

maximum complex phase of 25 degrees for appreciable ~~. The

initial guess for -yO is the zero vector. In addition, the choice

of regularization parameters is crucial to the convergence of

this algorithm. The measured data in this letter are simulated

full-angle scattering measurements with 8 transmitters and 36

receivers at a radius of one wavelength, as shown in Fig. 1.

Fig. 2(a) shows the true image of two metal cylinders

having diameter 0.05 A and separated by 0.42 A The image

reconstruction in Fig. 2(b) has a total size of 0.75-A square

and super-resolution is achieved to a scale of 0.1 A for

each conducting cylinder and 0.42 ~ for separating multiple

cylinders. Although the peak value of this image is only 0.226,

the image becomes sharper and the peak approaches unity

as the number of incident angles is increased. Hence, this

imaging method is useful for locating conducting cylinders in

the resonance region. Finally random gaussian noise was added

to the measured data. The image in Fig. 2(c) was reconstructed

from data with a signal-to-noise ratio (S/N) of 20 dB, so

the image is blurred out and the peak value is decreased to

0.094. One observes that the peak value decreases in these

reconstructions because the shape function is more spread out

in space. Roughly speaking, the volume of the shape functions

is preserved. In order to have the same total scattering strength

as a sharp image, a blurred image must have a decreased

magnitude.
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