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Microwave Imaging of Multiple Conducting
Cylinders Using Local Shape Functions

Weng Cho Chew, Senior Member, IEEE, and Gregory P. Otto, Student Member, IEEE

Abstract—A novel technique is presented for microwave imag-
ing of multiple conducting cylinders using local shape functions.
In this method, a scattering volume is divided into small sub-
scattering regions and assigned a local shape function amplitude.
The reconstructed image is represented by the set of local shape
functions that satisfy multiple scattering boundary conditions.
Monochromatic image reconstructions have a resolution scale of
0.1 )\ for single scatterers; multiple scatterers can be resolved at
a separation of 0.42 ).

I. INTRODUCTION

UCH work has been done recently on the microwave

imaging of conducting cylinders in the resonance re-
gion. A previous algorithm for microwave imaging of con-
ducting objects in the resonance region parameterizes the
conducting cylinder shape as a function of polar angle [1].
This is done in order to obtain a single-valued function that
is eventually optimized as a function of #. Unfortunately, this
method requires each metallic scatterer’s approximate center
to be known. Hence, this method is not as versatile as say the
Born iterative methods [2] for dielectric scatterers. However,
the Born iterative methods are not convergent for conducting
scatterers.

This letter presents a novel and versatile technique for
microwave imaging of multiple metallic cylinders with E,
incident fields. The novelty stems from the definition of local
shape functions assigned to discrete subscatterers and satisfy-
ing multiple scattering boundary conditions. This method is
more versatile for general multiple metallic inverse scattering
problems. An optimization is performed on the measured
far-fields to iteratively reconstruct the analog local shape
functions.

II. FORWARD MODEL

A fixed scattering volume V' containing all possible scat-
terers can be discretized on a regular grid with grid locations
r; for i = 1,2,...,N. Then, for F_ incident waves, cylin-
drical conducting scatterers in a volume V' C V’/ can be
approximately decomposed into smaller conducting cylinders
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Fig. 1. Data acquisition geometry for microwave imaging measurements.

“R” and “T” denote receivers and transmitters, respectively.

(or subscatterers) on this grid, as shown in Fig. 1. Intuitively,
this is equivalent to replacing a metallic scatterer with a group
of thin wires. In order to represent the discretized scatterers,
we assign a binary local shape function to each grid location

such that
— 1 !
Yo = 0,

Note that this formulation parameterizes the metallic cylinder’s
shape in terms of a set of binary local shape functions {~,}
with one index ¢ representing grid location.

It is well known that the field from small subscatterers can
be expanded in cylindrical harmonics [2]-[4], so that the total
field is

r,cV.
r.gV. M

N
Ez('l') =Ry ¢t(ko,'r) e, + Z'lﬁt(k’o,"'i) . a,. )
=1

where the first term is a multipole expansion in cylindrical
harmonics for the incident field in free-space and the second
term is a multipole expansion for the scattered field from each
subscatterer 2.

Finally, the unknown scattering amplitudes a; can be found
by enforcing the boundary conditions on the subscatterers
whereby multiple scattering effects are modeled [4]. Notice
that the boundary conditions for metallic cylinders are en-
forced only on subscatterers in scattering volume V, so the
T-matrix [2] must be weighted by the local shape function

1051-8207/92$03.00 © 1992 IEEE



CHEW AND OTTO: MICROWAVE IMAGING OF MULTIPLE CONDUCTING CYLINDERS ‘ ) 285

(@) .

Fig. 2. (a) True Image of 2 metal cylinders having diameter 0.05 X and
separated by 0.42 A. Peak value is of 1.0.

amplitude at each subscatterer. This procedure results in a set
of linear equations with a solution given by

a=[D(y) A+ D (7). 3)

Here, the known matrix A contains the T-matrices and the
translation matrices from other subscatterers to account for
multiple scattering interaction. The vector b contains the inci-
dent field amplitudes multiplied by the T-matrices. Moreover,
the operator D () converts the vector - with elements ; to a
diagonal matrix. In summary, the forward problem reduces to
solving (3) for the harmonic amplitudes of each subscatterer
represented by vector @, given the local shape functions for
each subscatterer in the vector 4. Then, the field is given b

(2). :

III. INVERSE MODEL

Basically, the inverse problem is defined as searching
through all possible -y and choosing the one that minimizes
the difference between the measured and computed scattered
field. For a set of NV binary local shape functions, the number
of search directions is 2V. This is impractical and nonunique
since 1) the evanescent fields are not measured and 2) noise
is present. Instead, we relax our definition of the local shape
functions from binary numbers to complex numbers and we
reconstruct the image by minimizing the following linearized

~cosl function at each iteration [3], [0]
min ([E3 — v a, — Gy, - (Yra1 — 'yk)uz
7k+1

2

+ 68|]vpsa - "Ik” C))

where E5°** is the measured scattered field and Gy, is the
linearized gradient matrix with respect to -y for the forward

(b)

Fig. 2. (b) Image of 2 metal cylinders having diameter 0.05 X and separated
by 0.42 A. Reconstruction after 22 iterations with no noise. Peak value is
0.226.

(©)

Fig. 2. (c) Image of 2 metal cylinders having diameter 0.05 A and separated
by 0.42 X. Reconstruction after 7-iterations with S/N=20 dB. Peak value is
0.094. :

problem at iteration v, The variational solution of the previ-
ous minimization problem can be written

-1
Yos1 = Vot {@1 G + «ﬁJ Gl (B =T ). )

This defines our iterative reconstruction where § is a small
regularization parameter. In this inverse problem, we have
allowed the set of local shape functions be a subset of the
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complex numbers because of the complex iterative algorithm
described by (5). More specifically, the application of the real
operator (o a set of complex measured fields is not an analytic
function and would thereby hinder the convergence of the
algorithm.

IV. RESULTS

The gray level plots represent the magnitude of the local
shape functions on a 0.05-A grid with a three point linear in-
terpolation scheme for post-processing. All calculations had a
maximum complex phase of 25 degrees for appreciable ,. The
initial guess for 7y, is the zero vector. In addition, the choice
of regularization parameters is crucial to the convergence of
this algorithm. The measured data in this letter are simulated
full-angle scattering measurements with 8 transmitters and 36
receivers at a radius of one wavelength, as shown in Fig. 1.

Fig. 2(a) shows the true image of two metal cylinders
having diameter 0.05 X and separated by 0.42 . The image
reconstruction in Fig. 2(b) has a total size of 0.75-) square
and super-resolution is achieved to a scale of 0.1 A for
cach conducting cylinder and 0.42 A for separating multiple
cylinders. Although the peak value of this image is only 0.226,
the image becomes sharper and the peak approaches unity
as the number of incident angles is increased. Hence, this
imaging method is useful for locating conducting cylinders in
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the resonance region. Finally random gaussian noise was added
to the measured data. The image in Fig. 2(c) was reconstructed
from data with a signal-to-noise ratio (S/N) of 20 dB, so
the image is blurred out and the peak value is decreased to
0.094. One observes that the peak value decreases in these
reconstructions because the shape function is more spread out
in space. Roughly speaking, the volume of the shape functions
is preserved. In order to have the same total scattering strength
as a sharp image, a blurred image must have a decreased
magnitude.
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